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Abstract
We study precontact groupoids whose infinitesimal counterparts are Dirac–
Jacobi structures. These geometric objects generalize contact groupoids. We
also explain the relationship between precontact groupoids and homogeneous
presymplectic groupoids. Finally, we present some examples of precontact
groupoids.

PACS numbers: 02.20.Bb, 02.30.Ik, 02.40.Ma

1. Introduction

Presymplectic groupoids, introduced and studied in [2], are global counterparts of Dirac
structures. They allow one to extend the well-known correspondence between symplectic
groupoids and Poisson manifolds to the context of Dirac geometry. Moreover, they provide a
framework for a unified formulation of various notions of momentum maps [1]. On the other
hand, Dirac–Jacobi structures (called E1(M)-Dirac structures in [15]) include both Dirac and
Jacobi structures. They naturally appeared in the geometric prequantization of Dirac manifolds
[17, 18].

In this paper, our aim is to investigate the integrability problem for Dirac–Jacobi structures.
This work is motivated by the fact that many Dirac manifolds can be quantized through their
integrating Lie groupoids. We show that the global counterparts of Dirac–Jacobi manifolds are
what we call here precontact groupoids. In particular, we recover the integrability of Jacobi
structures [5]. We also prove that there is a one-to-one correspondence between precontact
groupoids and homogeneous presymplectic groupoids. Moreover, the precontact groupoid
G̃ associated with an integrable Dirac structure L0 on M is just the prequantization of the
presymplectic groupoid G associated with L0 (that is, the central extension of Lie groupoids
M × S1 → G̃ → G satisfying some compatibility conditions), provided that the canonical
Dirac–Jacobi structure L on M corresponding with L0 is integrable, see section 5.2. We
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should mention that Zambon and Zhu independently study the geometry of prequantization
spaces [18].

Here is an outline of the paper. In sections 2 and 3, we provide some background
material. Section 4 contains our main results (theorems 4.2 and 4.4). In section 5, we give
some examples of precontact groupoids.

2. Basic definitions and results

In order to make the paper self-contained and to fix our notations, we briefly review some
definitions and known results.

2.1. Lie algebroids and Lie groupoids

A Lie algebroid over a smooth manifold M is a real vector bundle A → M together with a
Lie bracket [[·, ·]] on the space �(A) of smooth sections of A and a bundle map � : A → T M ,
called the anchor map, whose extension to sections satisfies the Leibniz identity

[[s1, f s2]] = f [[s1, s2]] + (�(s1)(f ))s2,

for any s1, s2 ∈ �(A).
Lie algebroids are infinitesimal counterparts of Lie groupoids. A Lie groupoid over

a smooth manifold M is given by a smooth manifold G together with two surjective
submersions α, β : G → M called the source map and the target map, a multiplication
m : G2 → G, a unit section ε : M → G and an inversion map i : G → G, where
G2 = {(g, h) ∈ G × G | α(g) = β(h)} is the set of composable pairs and the following
properties are satisfied:

1. α(m(g, h)) = α(h) and β(m(g, h)) = β(g),∀(g, h) ∈ G2,
2. m(g,m(h, k)) = m(m(g, h), k),∀g, h, k ∈ G such that α(g) = β(h) and α(h) = β(k),
3. α(ε(x)) = x and β(ε(x)) = x,∀x ∈ M ,
4. m(g, ε(α(g))) = g and m(ε(β(g)), g) = g,∀g ∈ G,
5. m(g, ι(g)) = ε(β(g)) and m(ι(g), g) = ε(α(g)),∀g ∈ G.

Here, the base manifold M, the α-fibres and the β-fibres are supposed to be Hausdorff but G
is not necessarily Hausdorff. We will often identify M with ε(M). There is a Lie algebroid
associated with every Lie groupoid: at a point x ∈ M , the fibre AxG of the Lie algebroid AG

of a given Lie groupoid G over M is simply the tangent space to the source fibre α−1(x) at the
identity element ε(x) and the anchor map is � = dβ : AxG → TxM .

The correspondence between Lie algebroids and Lie groupoids is not one-to-one since
not every Lie algebroid is isomorphic to the Lie algebroid of some Lie groupoid (see [3] and
references therein). A Lie algebroid A is integrable if it is isomorphic to the Lie algebroid
of some Lie groupoid. Up to isomorphism, there is a unique source-simply connected
Lie groupoid G(A) corresponding to an integrable Lie algebroid A. By a source-simply
connected Lie groupoid, we mean that the source fibres are simply connected. Essentially,
the Lie groupoid G(A) consists of A-homotopy classes of A-paths (more details about the
construction of G(A) and the obstructions to integrability can be found in [3]).

2.2. Dirac structures and presymplectic groupoids

Let M be a smooth n-dimensional manifold. There is a natural symmetric pairing 〈·, ·〉 on the
vector bundle T M ⊕ T ∗M given by

〈X1 + ξ1, X2 + ξ2〉 = 1
2 (ξ1(X2) + ξ2(X1)).
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Furthermore, the space of smooth sections of T M ⊕ T ∗M is endowed with the Courant
bracket, which is defined by

[X1 + ξ1, X2 + ξ2] = [X1, X2] + LX1ξ2 − iX2 dξ1,

for any X1 + ξ1, X2 + ξ2 ∈ �(T M ⊕ T ∗M).

Definition 2.1 [2, 6]. A Dirac structure on a smooth manifold M is a subbundle L of T M⊕T ∗M
which is maximally isotropic with respect to the symmetric pairing 〈·, ·〉 and whose space of
sections is closed under the Courant bracket.

Let LM and LN be Dirac structures on M and N, respectively. We say that a smooth map
F : M → N is a (forward) Dirac map if LN = F∗(LM), where

F∗(LM) = {(dF)(X) + ξ |X + F ∗ξ ∈ LM}.

Recall that any Dirac structure L has an induced Lie algebroid structure: the Lie bracket
on �(L) is just the restriction of the Courant bracket and the anchor map is the restriction
of the first projection to L, i.e. pr1|L : L → T M . Now, suppose that L is a Dirac structure
which is isomorphic to the Lie algebroid of a Lie groupoid G. Such a Lie groupoid is called
an integration of the Dirac structure L. Then, there exists an induced closed 2-form on G with
some additional properties. More precisely,

Definition 2.2 [2]. A presymplectic groupoid is a pair (G,ω) which consists of a groupoid

G
α

⇒
β

M such that dim(G) = 2 dim(M), and a 2-form ω ∈ 	2(G) satisfying the following

conditions:

(i) ω is closed, i.e. dω = 0.
(ii) ω is multiplicative, that is, m∗ω = pr∗

1 ω + pr∗
2 ω.

(iii) Ker (ωx) ∩ Ker (dα)x ∩ Ker (dβ)x = {0}, for all x ∈ M .

Definition 2.3. A vector field Z on a Lie groupoid G ⇒ M is multiplicative if there is a vector
field Z0 on M such that the flow φt

Z : G → G of Z is a local Lie groupoid morphism over the
flow φt

Z0
: M → M of Z0.

We say that a presymplectic groupoid (G,ω) is homogeneous if there exists a multiplicative
vector field Z such that LZω = ω.

The relationship between Dirac structures and presymplectic groupoids is provided by the
following result:

Proposition 2.4 [2]. Given a presymplectic groupoid (G,ω), there is a canonical Dirac
structure L on M which is isomorphic to the Lie algebroid AG of G, and such that the target
map β : (G,Lω) → (M,L) is a Dirac map, while the source map α : (G,Lω) → (M,L) is
anti-Dirac.

Conversely, suppose that L is a Dirac structure on M whose associated Lie algebroid is
integrable, and let G(L) be its α-simply connected integration. Then, there exists a unique
2-form ω such that (G(L), ω) is a presymplectic groupoid, the target map is a Dirac map and
the source map is anti-Dirac.

Here, Lω denotes the graph of the 2-form ω ∈ 	2(G), i.e. Lω = {X + iXω | X ∈ T G}.
Now, we concisely recall from [2] the construction of the Dirac structure associated with
a presymplectic groupoid (G,ω) whose associated Lie algebroid is denoted by AG → M .
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The multiplicative 2-form ω induces a bundle map �∗
ω : AG → T ∗M whose extension to

sections is defined as follows:

〈�∗
ω(ν), dβ(X)〉 = ω(ν,X) at all points x ∈ M, (1)

where X ∈ X(G), ν ∈ �(AG) and we use the same letter ν for the induced vector field on
G tangent to the α-fibres. This is well defined since the fact that ω is multiplicative implies
that Ker(dα) ⊂ (Ker(dβ))⊥ at all point g ∈ G, where the symbol ⊥ denotes the orthogonal
subspace with respect to ω.

Consider the subbundle L ⊂ T M ⊕ T ∗M given by

L = {�(ν) + �∗
ω(ν) | ν ∈ AG}, (2)

where � is the anchor map of the Lie algebroid AG. When (G,ω) is a presymplectic groupoid
then L is a Dirac structure on M characterized by the facts that (�, �∗

ω) : AG → L defines an
isomorphism of Lie algebroids and the target map β : (G,Lω) → (M,L) is a Dirac map.

2.3. Dirac–Jacobi structures

Let M be a smooth n-dimensional manifold. There is a natural bilinear operation 〈·, ·〉 on the
vector bundle E1(M) = (T M × R) ⊕ (T ∗M × R) defined by:

〈(X1, f1) + (ξ1, g1), (X2, f2) + (ξ2, g2)〉 = 1
2 (iX2ξ1 + iX1ξ2 + f1g2 + f2g1),

for any (X�, f�) + (ξ�, g�) ∈ �(E1(M)), with � = 1, 2. In addition, the space of smooth
sections of E1(M) is equipped with an R-bilinear operation which can be viewed as an
extension of the Courant bracket on T M ⊕ T ∗M , i.e.

[(X1, f1) + (ξ1, g1), (X2, f2) + (ξ2, g2)] = ([X1, X2], X1(f2) − X2(f1))

+
(
LX1ξ2 − LX2ξ1 + 1

2 d(iX2ξ1 − iX1ξ2)

+ f1ξ2 − f2ξ1 + 1
2 (g2 df1 − g1 df2 − f1 dg2 + f2 dg1),

X1(g2) − X2(g1) + 1
2 (iX2ξ1 − iX1ξ2 − f2g1 + f1g2)

)
,

for any (X�, f�) + (ξ�, g�) ∈ �(E1(M)) with � = 1, 2. For an alternative description of this
bracket, see [8, 13] and references therein.

Definition 2.5 [15]. A Dirac–Jacobi structure on M is a subbundle L of E1(M) which is
maximally isotropic with respect to 〈·, ·〉 and such that �(L) is closed under the extended
Courant bracket [·, ·].

Let LM (resp., LN ) be a Dirac–Jacobi structure on M (resp., N). We say that a smooth
surjective map F : M → N is a (forward) Dirac–Jacobi map if LN = F∗(LM), where

F∗(LM) = {((dF)(X), f ) + (ξ, g) | (X, f ◦ F) + (F ∗ξ, g ◦ F) ∈ LM}.

Basic examples of Dirac–Jacobi structures are Dirac and Jacobi structures on M (this
explains the terminology introduced in [9]).

2.4. Action Lie algebroids and 1-cocycles

It is known that (see [10]), given any Lie algebroid (A, [[·, ·]], �) over M and any 1-cocycle
φ ∈ �(A∗), there is an associated Lie algebroid over M ×R, denoted by (A× φR, [[·, ·]]φ, �φ),
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where the smooth sections of A × φR are of the form X̄(x, t) = Xt(x), with Xt ∈ �(A) for
all t ∈ R, and

[[X̄, Ȳ ]]φ(x, t) = [[Xt, Yt ]](x) + φ(Xt)(x)
∂Ȳ

∂t
− φ(Yt )(x)

∂X̄

∂t
,

�φ(X̄)(x, t) = �(Xt)(x) + φ(Xt)(x)
∂

∂t
,

(3)

where ∂X̄
∂t

∈ �(A × φR) denotes the derivative of X̄ with respect to t.

Remark 2.6. If L is a Dirac–Jacobi structure then the restriction of the extended Courant
bracket to sections of L together with the canonical projection of L onto T M makes L into a
Lie algebroid over M. In addition, φ ∈ �(L∗) defined by

φ(v) = f, for v = (X, f ) + (ξ, g) ∈ �(L) (4)

is a 1-cocycle for the Lie algebroid cohomology (see [11]). On the other hand, it is known
that a Dirac–Jacobi structure L on M corresponds to a Dirac structure L̃ on M × R given by

L̃ =
{(

X + f
∂

∂t

)
+ (et (ξ + g dt))

∣∣∣∣ (X, f ) + (ξ, g) ∈ L

}
. (5)

Moreover, L̃ is isomorphic to L × φR as a Lie algebroid.

2.5. Conformal classes of Dirac–Jacobi structures

Let L be a Dirac–Jacobi structure on M and let ϕ be a smooth nowhere vanishing function on
M. We set µ = d ln |ϕ|. Consider the vector bundle Lϕ over M whose space of smooth sections
is given by

�(Lϕ) = {(X, f − µ(X)) + ϕ(ξ + gµ, g) | (X, f ) + (ξ, g) ∈ �(L)}.
One can easily check that Lϕ is also a Dirac–Jacobi structure on M. The correspondence
(L, ϕ) �→ Lϕ is called a conformal change. For any fixed L, the family of all Lϕ is called a
conformal class of Dirac–Jacobi structures. For instance, when L comes from a presymplectic
form ω then Lϕ is nothing but the Dirac–Jacobi structure associated with (ϕω, d ln |ϕ|)
(see [15, 16] for more details).

3. Precontact groupoids

Definition 3.1. Let G
α

⇒
β

M be a Lie groupoid such that dim(G) = 2 dim(M) + 1. A precontact

groupoid structure on G is given by a pair (η, σ ) consisting of a 1-form η and a multiplicative
function σ (i.e., σ(gh) = σ(g) + σ(h)) such that

m∗η = pr∗
1 η + pr∗

1 (eσ )pr∗
2 η. (6)

Ker (dηx) ∩ Ker (ηx) ∩ Ker (dα)x ∩ Ker (dβ)x ∩ Ker (dσx) = {0}, for all x ∈ M.

(7)

Two precontact structures (η, σ ) and (η′, σ ′) on G are equivalent if there exists a nowhere
vanishing function ϕ : M → R such that

η′ = (ϕ ◦ β)η, σ ′ = σ + ln

∣∣∣∣ϕ ◦ β

ϕ ◦ α

∣∣∣∣ .
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Now, consider a Lie groupoid G
α

⇒
β

M together with a multiplicative function σ . In [12],

it is defined a right action of G on the canonical projection π1 : M × R → M as follows:

(x, t) · g = (α(g), σ (g) + t), for (x, t, g) ∈ M × R × G, such that β(g) = x.

Therefore, we have the corresponding action groupoid G×R ⇒ M ×R, denoted by G× σ R,
with structural functions given by

ασ (g, t) = (α(g), σ (g) + t), βσ (h, s) = (β(h), s),

mσ ((g, t), (h, s)) = (gh, t), if ασ (g, t) = βσ (h, s).
(8)

We denote by (AG, [[, ]], �) the Lie algebroid of G. The multiplicative function σ induces a
1-cocycle φ on AG given by

φ(x)(Xx) = Xx(σ), for x ∈ M and Xx ∈ AxG. (9)

In addition, we can identify the Lie algebroid of the Lie groupoid G × σ R with AG × φR.
Conversely, one has the following

Proposition 3.2 [5]. Let L be a Lie algebroid over M, φ be a 1-cocycle and L × φR the Lie
algebroid given by equation (3). Then, L is integrable if and only if L × φR is integrable.
Moreover, if G(L) (resp., G(L×φR)) is the α-simply connected integration of L (resp., L×φR)
and σ is the multiplicative function associated with φ, then G(L × φR) ∼= G(L) × σ R.

There is a correspondence between precontact and presymplectic groupoids. Indeed, one
has the following proposition:

Proposition 3.3. Let G ⇒ M be a Lie groupoid and σ a multiplicative function on G. There
is a one-to-one correspondence between precontact groupoids on (G, σ) and homogeneous
presymplectic groupoids on G × σ R.

Proof. We know that there exists a one-to-one correspondence between 1-forms on a manifold
M and closed 2-forms on M × R that are homogeneous with respect to ∂

∂t
. More precisely, if

η is a 1-form on M then ω = d(et η) is a homogeneous closed 2-form on M × R. Conversely,
assume that ω is homogeneous and closed. Set η̃ = i ∂

∂t
ω. One can check that L ∂

∂t
η̃ = η̃.

Hence, one has η̃ = et η, where η is a 1-form on M. Using the relation ω = d(et η), it
is straightforward to prove that conditions (ii) and (iii) in definition 2.2 are equivalent to
equations (6) and (7). �

4. Integration of Dirac–Jacobi structures

In this section, we show that precontact groupoids are the global objects corresponding to
Dirac–Jacobi structures. First, note the following lemma which is an immediate consequence
of remark 2.6 and proposition 3.2.

Lemma 4.1. A Dirac–Jacobi structure L is integrable if and only if its associated Dirac
structure L̃ ⊂ T (M × R) ⊕ T ∗(M × R) is integrable.

Let (G, η, σ ) be a precontact groupoid over M with target map β : G → M and let φ be
the associated 1-cocycle defined as in equation (9). Let AG → M be the Lie algebroid of G.
Consider the bundle map �∗

η : AG → T ∗M ×R whose extension to sections of AG is defined
as follows:

〈�∗
η(ν), (dβ(X), f )〉 = dη(ν,X)|M + φ(ν)η(X)|M − η(ν)|Mf,
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where f ∈ C∞(M),X ∈ X(G), ν ∈ �(AG) and we denote by the same letter ν the induced
vector field on G tangent to the α-fibres. Note that �∗

η is well defined since the σ -multiplicativity
property of η implies that, for ν ∈ �(AG) and at all points x ∈ M , one has the following

dβ(X) = 0 ⇒ η(ν,X) + (ν · σ)η(X) = 0.

Let � be the anchor map of AG and consider the map �∗ : AG → T M × R defined by

�∗(ν) = (�(ν), φ(ν)) at all points x ∈ M.

Under these notations, we have the following result:

Theorem 4.2. Let (G, η, σ ) be a precontact groupoid over M. Then, there exists a unique
Dirac–Jacobi structure LM on M such that β : G → M is a Dirac–Jacobi map and the map
(�∗, �∗

η) : AG → LM is a Lie algebroid isomorphism.

Proof. By proposition 3.3, one has the presymplectic groupoid (G × σ R, ω = d(et η)) over
M × R. Then, using proposition 2.4, one gets a Dirac structure LM×R on M × R such that βσ

is a Dirac map. Thus,

LM×R =
{

dβσ

(
X + f

∂

∂t

)
+ (ξ + k dt)

∣∣∣∣i(X+f ∂
∂t

)ω = β∗
σ (ξ + k dt)

}

=
{

dβσ

(
X + f

∂

∂t

)
+ (ξ + k dt)

∣∣∣∣β∗
σ (ξ) = et (iX dη + f η), k ◦ β = −η(X)

}
.

Therefore, one can write LM×R ≡ L̃M , where LM is the Dirac–Jacobi structure given by

LM = {((dβ)(X), f|M ) + (ξ, k)|β∗(ξ) = iX dη + f η, k ◦ β = −η(X)}.
By construction, β : G → M is a Dirac–Jacobi map and (�∗, �∗

η) : AG → LM is an
isomorphism of Lie algebroids. There follows the result. �

Corollary 4.3. Every conformal class of precontact groupoid structures on G ⇒ M gives
rise to a conformal class of Dirac–Jacobi structures on the base manifold M.

Proof. Let (G, η, σ ) be a precontact groupoid over M. Let ϕ be a nowhere vanishing function
on M. Replace η by ηϕ = (ϕ◦β)η in the proof of theorem 4.2, then one gets a vector subbundle
(LM)ϕ ⊂ (T M × R) ⊕ (T M × R) defined as follows:

(LM)ϕ = {((dβ)(X̂), f̂ |M ) + (̂ξ , k̂)|β∗(̂ξ ) = iX̂ dηϕ + f̂ ηϕ, k̂ ◦ β = −ηϕ(X̂)}.
Comparing (LM)ϕ and LM , one gets a relation between them by setting

X̂ = X, k̂ = ϕk, ξ̂ = ϕ(ξ + k d ln |ϕ|), f̂ = f − 1

ϕ ◦ β
(X · ϕ ◦ β).

Thus, (LM)ϕ is conformally equivalent to LM which is the Dirac–Jacobi structure associated
with (η, σ ). This completes the proof of the corollary. �

Conversely, we have the following result.

Theorem 4.4. Let L be an integrable Dirac–Jacobi structure on M, and let G(L) be its
α-simply connected integration. There exists a unique and canonical precontact groupoid
structure on G(L) such that the target map β : G(L) → M is a Dirac map. Furthermore,
any conformal class of integrable Dirac–Jacobi structures on M induces a conformal class of
precontact groupoid structures on G(L).
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To prove this theorem we will use the following lemma whose proof can be found in [2].

Lemma 4.5 [2]. Two multiplicative 2-forms ω1 and ω2 on a Lie groupoid G ⇒ M coincide
on G if and only if dω1 = dω2 and �∗

ω1
= �∗

ω2
.

Proof of theorem 4.4. Suppose that L is an integrable Dirac–Jacobi structure on M. Let
φ ∈ �(L∗) be the 1-cocycle defined as in equation (4). Since G(L) is α-simply connected,
there is a unique multiplicative function σ : G(L) → R induced by φ and defined as in
equation (9). We denote by L̃ the Dirac structure on M × R associated with L and given by
equation (5). Applying proposition 2.4, one gets a unique presymplectic groupoid structure ω

on G(L̃) such that the associated target map is Dirac. Moreover, it follows from remark 2.6 and
proposition 3.2 that

G(L̃) ∼= G(L × φR) ∼= G(L) × σ R.

Obviously, the vector field ∂
∂t

is multiplicative since its flow

ψs : G(L) × σ R → G(L) × σ R

(g, t) �→ (g, t + s)

is a morphism of Lie groupoids over ψs : M × R → M × R defined by ψs(x, t) = (x, s + t).
Consider the 2-form ω′ = L ∂

∂t
ω. Both ω and ω′ are closed and multiplicative. On the other

hand, using the identity i[X,Y ] = LX ◦ iY − iY ◦ LX, one gets

iν
(
L ∂

∂t
ω

) = L ∂
∂t
(iνω) − i[ ∂

∂t
,ν]ω = L ∂

∂t
(iνω),

since
[

∂
∂t

, ν] = 0 where ν denotes the vector field on G induced by an arbitrary element of
ν of AG and which is tangent to the α-fibres. Thus, one obtains that

�∗
ω′(ν) = L ∂

∂t
(�∗

ω(ν)).

It follows from equation (2) and the definition of L̃ (see equation (5)) that the term �∗
ω(ν) has

the form �∗
ω(ν) = et (ξ + g dt), where ξ and g do not depend on t. Therefore, �∗

ω′ = �∗
ω. We

then deduce from lemma 4.5 that

L ∂
∂t
ω = ω.

By proposition 3.3, there exists a 1-form η such that ω = d(et η) and (G(L), η, σ ) is a
precontact groupoid. The uniqueness of η comes from the uniqueness of ω after the integration
of the Dirac structure L̃.

Next, recall that, for every nowhere vanishing function ϕ on M, there is an equivalent
Dirac–Jacobi structure on M whose space of sections is given by

�(Lϕ) = {(X, f − µ(X)) + ϕ(ξ + gµ, g)|(X, f ) + (ξ, g) ∈ �(L)}.
Consider the 1-cocycle φϕ ∈ �(L∗

ϕ) defined as follows:

φϕ(e) = f − µ(X), for all e = (X, f − µ(X)) + ϕ(ξ + gµ, g).

We have a natural commutative diagram of vector bundle morphisms:

L
�−→ Lϕ

↓ ↓

L × φR
�−→ Lϕ × φϕ

R.
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Moreover, Lϕ induces a precontact structure (ηϕ, σϕ) on G(Lϕ) ∼= G(L) given by

ηϕ = (ϕ ◦ β)η σϕ = σ + ln

∣∣∣∣ϕ ◦ β

ϕ ◦ α

∣∣∣∣ .
Thus, any conformal class of integrable Dirac–Jacobi structures on M induces a conformal
class of precontact groupoid structures. �

5. Examples

In this section, we will give some examples of Dirac–Jacobi structures and describe their
corresponding precontact groupoids.

5.1. Precontact structures

A precontact structure on a manifold M is just a 1-form θ on M. A precontact structure θ on
M induces a Dirac–Jacobi structure Lθ whose space of smooth sections is

�(Lθ) = {(X, f ) + (iX dθ + f θ,−iXθ)|(X, f ) ∈ X(M) × C∞(M)}.
We observe that the Lie algebroids Lθ and (T M × R, [·, ·], π) are isomorphic, where
π : T M × R → T M is the canonical projection over the first factor and [·, ·] is given
by

[(X, f ), (Y, g)] = ([X, Y ], X(g) − Y (f )),

for (X, f ), (Y, g) ∈ X(M) × C∞(M). Moreover, under the isomorphism between Lθ and
T M × R, the 1-cocycle φ is the pair (0, 1) ∈ 	1(M) × C∞(M).

On the other hand, consider the product G = M × M × R of the pair groupoid with R.
The function σ : G → R, (x, y, t) �→ t , is trivially multiplicative. In addition, if θ is a 1-form
on M then one can define the 1-form η on G given by

η = π∗
1 θ − eσ π∗

2 θ,

where πi, i ∈ {1, 2}, is the projection on the ith component. Then (G, η, σ ) is a precontact
groupoid and, moreover, the corresponding Dirac–Jacobi structure on M is just Lθ .

5.2. Dirac structures

Let L0 be a vector subbundle of T M ⊕ T ∗M and consider the vector subbundle L of E1(M)

whose sections are

�(L) = {(X, 0) + (α, f ) | X + α ∈ �(L0), f ∈ C∞(M)}.
Then, L0 is a Dirac structure on M if and only if L is a Dirac–Jacobi structure.

If we denote by L0 (resp., L) the Lie algebroid associated with the Dirac structure (resp.,
the Dirac–Jacobi structure), then we have that L ≡ L0 × R. Moreover, a direct computation
shows that the bracket on �(L) is given by

[[(X1, f1), (X2, f2)]]L = ([[X1,X2]]L0, �L0(X1)(f2) − �L0(X2)(f1) + 	L0(X1,X2)),

for (X1, f1), (X2, f2) ∈ �(L), and where ([[·, ·]]L0, �L0) (resp., ([[·, ·]]L, �L)) denotes the Lie
algebroid structure on L0 (resp., L) and 	L0 ∈ �(∧2L∗

0) is the closed 2-section given by

	L0(X1,X2) = 1
2 (ξ1(X2) − ξ2(X1)), for Xi = Xi + ξi ∈ �(L0).

Therefore, we have that the Lie algebroid structure on L is just the central extension of the
Lie algebroid L0 by the closed 2-section 	L0 . On the other hand, from equation (4), one sees
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that the 1-cocycle φ identically vanishes. If L0 as well as L are integrable and (G,ω) is the
presymplectic groupoid associated with L0 then one obtains a prequantization of (G,ω), that
is, a central extension of Lie groupoids

M × S1 → G̃ → G,

and a multiplicative 1-form η ∈ 	1(G̃) (m∗η = pr∗
1 η + pr∗

2 η) which is a connection 1-form
for the principal S1-bundle π : G̃ → G and which satisfies dη = π∗ω (see [4]).

5.3. Jacobi manifolds

Let (�,E) be the Jacobi manifold and L(�,E) the corresponding Dirac–Jacobi structure

L(�,E) = {(��(αx) + λEx,−αx(Ex)) + (αx, λ)|(αx, λ) ∈ T ∗
x M × R, x ∈ M}.

In this case, the corresponding Dirac structure on M × R is the one coming from the
Poissonization of the Jacobi structure (�,E), i.e. � = e−t

(
� + ∂

∂t
∧ E

)
. Thus, the

presymplectic groupoid is an honest symplectic groupoid (see [2]), and therefore,
the precontact groupoid structure integrating L(�,E) is a contact groupoid, i.e., the 1-form
defines a contact structure on G. This result was first proved in [7] (see also [5, 12, 14]).
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